Internet of Things (IoT):
A Vision, architectural elements,
and future directions
(Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, Marimuthu Palaniswami)

DEDI SETIAWAN / 149758115
• Cloud Centric Internet of Things
 – Two perspective:
 • *Internet* centric: internet service being the main focus
 • *Thing* centric: smart object take the center stage

• Cloud computing
 – Use as a viable framework to combined with ubiquitous computing

• Sensing service provider
 – Using storage cloud for their sensor data collection
 • Give benefit for analytic tool S/W developer
 • Give benefit for AI, Machine Learning, or Data Mining Expert
 • Give benefit for visualization computer graphics designer
Network of Things
- sensing data
- collect data
(data = sensor data)

Cloud computing
- store the data
- get the insight/pattern of data
 (analytics - computation)
- illustrate the insight
 (visualize the data)
- archiving data
 (just store)

Applications
- developer create interactive UI
 with useful information
- without worry where the data
 come from
- developer monetizing data
 sensor

Conceptual framework – IoT layer
- Applications
 - Surveillance
 - Critical infrastructure monitoring
 - Environment Monitoring
 - Health Monitoring
 - Smart Transportation
- Cloud Computing
 - Visualization
 - SaaS
 - PaaS
 - IaaS
 - Computation
 - Analytics
 - Storage
- Wireless Sensor Networks
 - Network of Things
 - Security, Re-configurability, Quality of Service, Communication protocols, Location Awareness, Compressive Sensing
Implementation Cloud Centric Model – End to end interaction
What the implementation models offered?

- Reading data streams either from sensor directly
- Easier logic expression data analysis
 - Transparent
 - Scalable manner
- Detect specific event and passed to output streams
- Reducing time and cost develop IoT applications
• Aneka Cloud Computing Platform
 - .NET based PaaS (Platform as Service)
 • Utilize storage and compute resource
 - Public cloud
 - Private cloud
• Application Scheduler
 – Responsible for assigning each resource to a task in an application for execution

• Dynamic Resource Provisioning
 – Implements the logic for provisioning and managing virtualized resources
- IoT Sensor Data Analytic SaaS using Aneka and Microsoft Azure
 - Microsoft Azure = cloud platform, includes:
 - Microsoft Azure
 - SQL Azure
 - AppFabric
 - Azure Marketplace
- Ubicomp related implementation:
 - Seamless operation within specific deadline by utilizing public and private cloud services
 - Support huge computation task for data analytic and AI (sensor data analytic)
- Aneka Master container deployed in the on-premises private cloud
- Aneka Worker container will be run as instances Microsoft Azure Role
- **Management Extensibility Framework (MEF)**
 - Solution for updating analytic tools by several client
 - Third party plugin
 - Improves flexibility, maintainability and testability of large applications in IoT platform
 - Standard way for the host application to expose itself and consume external extensions