Other Public-key Cryptosystems

Erzhena Tcydenova

Department of Computer Science & Engineering Seoul National University of Science & Technology CIS (Cryptography and Information Security) Lab

Contents

- I. Diffie-Hellman Key Exchange Protocol
- II. ElGamal Cryptographic System
- III. Elliptic Curve Cryptography

- The first published public-key algorithm by Diffie and Hellman that defined public-key cryptography.
- □ It is generally referred to as Diffie-Hellman key exchange.
- The purpose of the algorithm is to enable two users to securely exchange a key that can then be used for subsequent encryption of messages.
- The Diffie-Hellman algorithm depends for its effectiveness on the difficulty of computing discrete logarithms.

Global Public Elements		
q	prime number	
α	$\alpha < q$ and α a primitive root of q	

ſ	User A Key Generation		
	Select private X_A	$X_A < q$	
	Calculate public Y_A	$Y_A = \alpha^{XA} \mod q$	

User B Key Generation		
Select private X_B	$X_B < q$	
Calculate public Y_B	$Y_B = \alpha^{XB} \mod q$	

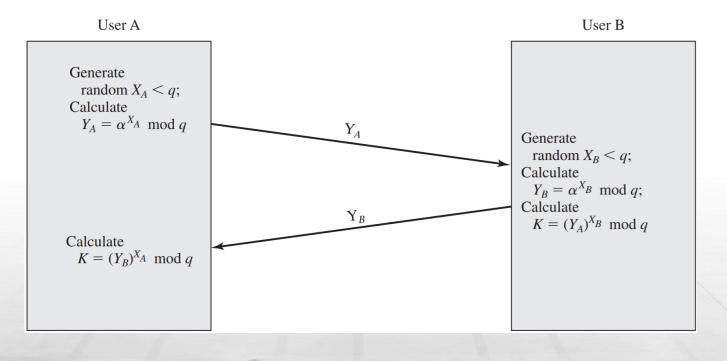
Calculation of Secret Key by User A $K = (Y_B)^{XA} \mod q$

Calculation of Secret Key by User B

 $K = (Y_A)^{XB} \mod q$

- Cryptography Information Security Laboratory
- It is relatively easy to calculate exponentials modulo a prime, it is very difficult to calculate discrete logarithms.
- □ For large primes, the latter task is considered infeasible.
- □ Example:
 - > Key exchange is based on the use of the prime number q = 353, primitive root of 353: $\alpha = 3$
 - > A and B select secret keys $X_A = 97$ and $X_B = 233$
 - > A computes $Y_A = 3^{97} \mod 353 = 40$
 - > B computes $Y_B = 3^{233} \mod 353 = 248$
 - Then, they exchange public keys
 - > A computes $K = (Y_B)^{X_A} \mod 353 = 248^{97} \mod 353 = 160$
 - > B computes $K = (Y_A)^{X_B} \mod 353 = 40^{233} \mod 353 = 160$

- Suppose that user A wishes to set up a connection with user B and use a secret key to encrypt messages on that connection.
- User A can generate private key, calculate public key and send that to user B.
- □ User B responds by generating private and public keys, and sending to user A.
- \Box The necessary public values q and α would need to be known ahead of time.



ElGamal Cryptographic System

- □ In 1984, T. Elgamal announced a public-key scheme based on discrete logarithms, closely related to the Diffie-Hellman technique.
- The ElGamal cryptosystem is used in some form in a number of standards including the digital signature standard (DSS), and the S/MIME e-mail standard.

ElGamal Cryptographic System

Global Public Elements		
q	prime number	
α	$\alpha < q$ and α a primitive root of q	

Key Generation by Alice		
Select private X_A	$X_A < q - 1$	
Calculate Y_A	$Y_A = \alpha^{XA} \mod q$	
Public key	$PU = \{q, \alpha, Y_A\}$	
Private key	X_A	

Encryption by Bob with Alice's Public Key		
	Plaintext:	M < q
	Select random integer k	k < q
	Calculate K	$K = (Y_A)^k \mod q$
	Calculate C_1	$C_1 = \alpha^k \mod q$
	Calculate C_2	$C_2 = KM \mod q$
	Ciphertext:	(C_1, C_2)

Decryption by Alice with Alice's Private Key		
Ciphertext:	(C_1, C_2)	
Calculate K	$K = (C_1)^{XA} \mod q$	
Plaintext:	$M = (C_2 K^{-1}) \bmod q$	

ElGamal Cryptographic System

□ As with Diffie-Hellman, the global elements of ElGamal are a prime number q and α , which is a primitive root of q.

□ Example:

- > q = 19, α = 10
- > Alice chooses $X_A = 5$
- Then $Y_A = \alpha^{X_A} \mod q = \alpha^5 \mod 19 = 3$
- Alice's private key is 5, public key – {19, 10, 3}
- Suppose M = 17
- > Bob chooses k = 6
- > Then, $K = (Y_A)^k \mod q =$ 3⁶ mod 19 = 729 mod 19 = 7

- So, $C_1 = \alpha^k \mod q = a^6 \mod 19 = 11$
- \succ C₂ = KM mod q = 7 x 17 mod 19 =
 - $119 \mod 19 = 5$
- Bob sends ciphertext (11, 5)
- > Alice calculates $K = (C_1)^{X_A} \mod q =$
 - $11^5 \mod 19 = 161051 \mod 19 = 7$
- > Then K^{-1} is 7^{-1} mod 19 = 11
- ▶ Finally, M = $(C_2 K^{-1}) \mod q =$
 - $5 \times 11 \mod 19 = 55 \mod 19 = 17$

- Most of the products and standards that use public-key cryptography for encryption and digital signatures use RSA.
- The key length for secure RSA use has increased over recent years, and this has put a heavier processing load on applications using RSA.
- □ A competing system challenges RSA: elliptic curve cryptography (ECC).
- ECC is showing up in standardization efforts, including the IEEE P1363 Standard for Public-Key Cryptography.
- The principal attraction of ECC, compared to RSA, is that it appears to offer equal security for a far smaller key size, thereby reducing processing overhead.

- □ The addition operation in ECC is the counterpart of modular multiplication in RSA, and multiple addition is the counterpart of modular exponentiation.
- To form a cryptographic system using elliptic curves, we need to find a "hard problem" corresponding to factoring the product of two primes or taking the discrete logarithm.
- □ Consider the equation Q = kP where $Q, P \in E_p(a, b)$ and k < p.
- □ It is relatively easy to calculate *Q* given *k* and *P*, but it is relatively hard to determine *k* given *Q* and *P*.
- □ This is called the discrete logarithm problem for elliptic curves.

	Global Public Elements
$E_q(a, b)$	elliptic curve with parameters a, b , and q , where q is a prime or an integer of the form 2^m
G	point on elliptic curve whose order is large value n

User A Key Generation		
Select private n_A	$n_A < n$	
Calculate public P_A	$P_A = n_A \times G$	

User B Key Generation		
Select private n_B	$n_B < n$	
Calculate public P_B	$P_B = n_B \times G$	

Calculation of Secret Key by User A $K = n_A \times P_B$

Calculation of Secret Key by User B

 $K = n_B \times P_A$

The security of ECC depends on how difficult it is to determine k given kP and P.
This is referred to as the elliptic curve logarithm problem.

Symmetric Scheme (key size in bits)	ECC-Based Scheme (size of <i>n</i> in bits)	RSA/DSA (modulus size in bits)
56	112	512
80	160	1024
112	224	2048
128	256	3072
192	384	7680
256	512	15360

Thank you