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More Number Theory

Prime numbers

An integer p > 1  is a prime number , if and only if  its only divisors are ±1 and ±𝑝

Any integer 𝑎 > 1 can be factored in a unique way as

𝑎 = 𝑝1
𝑎1 × 𝑝2

𝑎2 × 𝑝3
𝑎3 ×⸱⸱⸱ × 𝑝𝑡

𝑎𝑡

Where 𝑝𝑡 > 𝑝𝑡−1> ⸱⸱⸱> 𝑝1 are prime numbers , 𝑎𝑖 is a positive integer.

Ex)  Prime numbers

2 , 3 , 4 , 5 , 7 , 11 , 13 , 17 , 19 , 23 , 29 , 31 , 37 , 41 , 43 , 47 , 53 , 59 , 61 ,

67 , 71 , 73 , 79 ,  83 , 89

91 = 71 × 131
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More Number Theory

Prime numbers

Ex) The integer 12 is represented by {𝑎2 = 2 , 𝑎3 = 1} =>  22 × 31

The integer 18 is represented by {𝑎2 = 1 , 𝑎3 = 2} =>  21 × 32

Multiplication of two numbers is equivalent to adding  the exponents.

Ex)12 ×18 = (22 × 31) × (21 × 32) = 2(2+1) × 3(1+2) = (23 × 33) = 216
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More Number Theory

Relatively prime number

When two numbers have no common factors other than 1.

Ex) 21 and 22 are relatively prime

• The factors of 21 are 1, 3, 7 and 21
• The factors of 22 are 1, 2, 11 and 22

(The only common factor is 1)

Ex) But 21 and 24 are NOT relatively prime

• The factors of 21 are 1, 3, 7 and 21
• The factors of 24 are 1, 2, 3, 4, 6, 8, 12 and 24
(the common factors are 1 AND 3)

GCD(21,24) = 3

GCD mean the greatest common divisor
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More Number Theory

𝛼 = integer , 𝑛 = positive integer 

𝛼 mod 𝑛 to be the remainder when 𝛼 is divided by n.

𝛼 = 𝑞𝑛 + 𝑟 ,(0 <= 𝑟 < 𝑛 )

𝑞 is Quotient

𝑟 is Remainder
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Modular Arithmetic
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More Number Theory

Two integers a , b are said to be congruent (modulo n,)

if (a mod n) = (b mod n). This is written as a ≡ b (mod n)

Ex) 73 mod 23 { 73 = 23×3 + 4 } = 4

4 mod 23 { 4 = 23×0 + 4 } = 4

73 ≡ 4 (mod 23)
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More Number Theory

𝑝 prime number ,  𝛼 = positive integer not divisible by 𝑝

𝛼𝑝−1 ≡ 1 (mod 𝑝)

Q) 718 ≡ ? (mod 19) [ex)𝛼 = 7 , 𝑝 = 19]

A)        1 (By the fermat’s theorem) 

72 = 49 ≡ 11 (mod 19)

74 = 121 ≡ 7 (mod 19)

78 = 49 ≡ 11 (mod 19)

716 = 121 ≡ 7 (mod 19)

∴ 𝛼𝑝−1 = 718 = 716 ∗ 72 = 7 ∗ 11 ≡ 1 (mod 19)
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More Number Theory

An alternative form of Fermat’s theorem

𝑝= prime number   ,   𝛼 = a positive integer,

𝛼𝑝 ≡ 𝛼(mod 𝑝)

Ex)  𝑝 =5 , 𝛼=3       35 = 243 ≡ 3(mod 5)

𝑝 =5 , 𝛼=10 105= 100000 ≡ 10(mod 5) 
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More Number Theory

Euler’s Totient Function

In number theory , Euler’s totient function is indicated by 𝜑(n)

𝜑(n) = the number of positive integers less than n and relatively prime to n.
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Euler’s theorem

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14

𝜑(n) 1 1 2 2 4 2 6 4 6 4 10 4 12 6



More Number Theory
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Euler’s theorem

Characteristics of Euler Function

𝜑(1) =1

A prime number = n Two prime number p and q , n = p×q

𝜑(n) = n - 1 𝜑(n) = 𝜑(p×q) = 𝜑(p) × 𝜑(q) = (p - 1) × (q – 1)



More Number Theory

Every a , n that are relatively prime

a𝜑(n) ≡ 1 (mod n)

Ex) a =3 ; n = 10 ; 𝜑(10) = 4 ; 34= 81≡ 1 (mod 10)

a =2 ; n = 11 ; 𝜑(11) = 10 ; 310= 1024 ≡ 1 (mod 11)

An alternative form of the Euler’s theorem

a𝜑(n)+1 ≡ a (mod n)
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More Number Theory

Consider the equation

y = gx mod p

Given g, x, and p, it is a straightforward matter to calculate y

y = gx mod p

However, given y, g, and p, very difficult to calculate x

The difficulty seems to be on the same order of magnitude as that of factoring primes 
required for RSA.

13

Discrete Logarithm Problem : DLP



Public-Key Cryptography and RSA

Symmetric cryptosystems

Symmetric encryption’s two of the most difficult problems

First problem = key distribution

1. Two communicants already share a symmetric key

2. The use of a key distribution center

Second problem = digital signatures

Symmetric cryptosystems Secret key

public-key cryptosystems       Public key         Private key
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A public-key encryption scheme has six ingredients

1. Plaintext 

2. Encryption algorithm

3. Public key 

4. Private key

5. Ciphertext

6. Decryption algorithm

Public-Key Cryptography and RSA
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Public-Key Cryptography and RSA
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A public-key encryption scheme has six ingredients

1. Plaintext 

2. Encryption algorithm

3. Public key 

4. Private key

5. Ciphertext

6. Decryption algorithm
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key
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Public-Key Cryptography and RSA

Conventional and Public-Key Encryption
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Public-Key Cryptography and RSA

Public-Key Cryptosystem: Secrecy

 Source A that produces a message in plaintext{X = [X1, X2, … , XM]}

 The message's destination is destination B.

 Message X and the PUb as input, A forms the ciphertext Y = [Y1, Y2, … , YN]

 Y = E(PUb, X) (PUb = public key) 

 The receiver, in possession of the matching private key, is able to invert the transformation

 X = D(PRb,Y) (PRb =  private key)
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Public-Key Cryptography and RSA

Public-Key Cryptosystem: Authentication

 Y = E(PRa ,X)

 X = D(PUa ,Y)

 Encrypts message using A’s PRa before transmitting it. B can decrypt it using A’s PUa.

 Encrypted using A’s private key, only A could have prepared the message. = digital signature

 Authentication  does not provide confidentiality.

 because any observer can decrypt the message by using the sender’s public key(PUa).
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Public-Key Cryptography and RSA

Public-Key Cryptosystem: Authentication and Secrecy

 Encrypting a message, using the sender’s private key.(Digital signature)

 Next, we encrypt again, using the receiver’s public key.

 Disadvantage = Complex public key algorithms should be performed four times.

 Z = E(PUb , E(PRa ,X))

 X = D(PUa , D(PRb ,Z))
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Public-Key Cryptography and RSA

Applications for Public-Key Cryptosystems

 Secrecy :Encryption/decryption( PUb :The sender encrypts a message with the recipient’s public key.)

 Authentication : Digital signature(PRa : The sender “signs” a message with its private key.)

 Key exchange (to exchange a session key)
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Public-Key Cryptography and RSA

Requirements for Public-Key Cryptography

 Public-Key algorithm’s Conditions (Diffie and Hellman)

1. It is easy to generate a pair 

PUb , PRb
2. It is easy to generate the ciphertext 

C = E(PUb , M)

3. It is easy to recover the original message

M = D(PRb, C) = D[PRb, E(PUb, M)]

4. It is infeasible knowing the public key, PUb, to determine the private key, PRb.

5. It is infeasible knowing the public key, PUb ,  a ciphertext, C, to recover the original message, M.

6. The two keys can be applied in either order(add a sixth requirement)

M = D[PUb, E(PRb, M)] = D[PRb, E(PUb, M)]
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Public-Key Cryptography and RSA

Trap-door one-way function

Easy to calculate in one direction and infeasible to calculate in the other direction unless

certain additional information is known.

Y = f𝑘(X) easy, if k and X are known

X = f𝑘−1 (Y) easy, if k and Y are known

X = f𝑘−1 (Y) infeasible, if Y is known but k is not known
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Public-Key Cryptography and RSA

 RSA is one of the public-key cryptography algorithm

 Developed in 1977 by Ron Rivest, Adi Shamir, and Len Adleman and published in 1978

 The plaintext and ciphertext are integers between 0 and (n – 1) for n

 A typical size for n is 1024 bits, or 309 decimal digits.

 Slower to calculate than the secret key cryptography DES.

 Safety is based on the difficulty of prime factorization
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Public-Key Cryptography and RSA

RSA Encryption Algorithm

 Public key = PU = {e, n}

 Private key =  PR = {d, n}

 Encryption

 C = Me mod n

 Decryption

 M = Cd mod n = (Me)d mod n = Med mod n
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Public-Key Cryptography and RSA

Generate order Key pair

1. Find the value of N

2. Find the value of L

3. Find the value of E

4. Find the value of D

Both sender and receiver must know the value of n.

The sender knows the value of e

The receiver knows the value of d

PU = {e, n},  PR = {d, n}
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Public-Key Cryptography and RSA

Ex) p = 17, q = 11, two prime numbers (private, chosen)

1. Find the value of N

n = p×q = 17 ×11 =187                  (public, calculated) 

2. Find the value of L= 𝛗 𝒏

𝜑 𝑛 = 𝜑 𝑝 × 𝑞 = (𝑝 − 1) × (𝑞 − 1)=16 ×10=160

3. Find the value of E

gcd(𝜑 𝑛 , e) = 1

1 < e < 𝜑 𝑛 = 1< e <160

Select e such that e is relatively prime to 𝜑 𝑛 = 160 and less than 𝜑 𝑛

Ex) choose e = 7

4. Find the value of D

D < L = 160

DE ≡ 1(mod L) = d × 7=161=(1mod160)

D = 23
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Public-Key Cryptography and RSA

1. Find the value of N = 187

2. Find the value of L= 𝜑 𝑛 =160

3. Find the value of E = 7

4. Find the value of D =23

PU = {7, 187},  PR = {23, 187}  M = 88

PU = {e, n},  PR = {d, n}

Encryption

C = Me mod n

C = 887 mod 187 = 11

Decryption

M = Cd mod n 

M = 1123mod 187 = 88
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Group-Ring-Field

A GROUP (G,∗) is a set G which is CLOSED under an operation ∗ and satisfies the following properties:

• Ex) (ℤ,+,0) 

• CLOSED 

 For any x, y ∈ G, x ∗ y ∈ G

• ℤ is a set of integers

• Identity 

 There is an element e in G, such that for every x ∈ G, x ∗ e = e ∗ x = x.

 5 + 0 = 0 + 5 = 5 (Identity element = 0)

• Inverse 

 For every x in G there is an element y ∈ G such that x ∗ y = y ∗ x = e, where again e is the 
identity

 5+ (-5) = 0 , 8 + (-8) = 0

• Associativity

 The following identity holds for every x, y, z ∈ G: x ∗ (y ∗ z) = (x ∗ y) ∗ z

 (5+3)+(-2) = (5) + (3+(-2)) = 6
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Group-Ring-Field

A RING (ℝ,+,×,0) is a set R which is CLOSED under two operations + and × and satisfying the 
following properties:

• ℝ is an “abelian group” under  (+)  if x ∗ y = y ∗ x for every x, y ∈ G.

• (R, +)

• Identity

 a + 0 = 0 + a = a

• Inverse

 a + (-a) = (-a) + a = 0

• Commutative

 a + b = b + a

• Associative

 (a + b) + c = a + (b + c)

• (R, ×)

• Associative

 (a·b)·c = a·(b·c)

• (R, +, ×)

• Distributive

 a × (b + c) = (a × b) + (a × c) 

 (b + c) × a = b × a + c × a.
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Group-Ring-Field

A RING (ℝ,+,×,0) is a set R which is CLOSED under two operations + and × and satisfying the 
following properties

• Commutative ring

 A ring in which the multiplication operation is commutative.

 a × b= b × a (commutative)

• Ring with unity

 1 ∈ R

 a × 1= a = 1 × a 

• Division ring

 every non-zero element of R has a (unique) non-zero product inverse.

 Every non-zero element of R is a unit.

 R has no proper elements.

 a ∈ R, a≠0

 a ×a−1= a−1 × a = 1 
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Group-Ring-Field

A FIELD is a set F which is CLOSED under two operations + and × such that 

• Commutative division ring

• (F, +) is a commutative (additive) group

 (identity) : a + 0 = a = 0 + a

 (inverse) : a + (-a) = 0 = (-a) + a

 (associativity) : (a + b) + c = a + (b + c)

 (commutativity) : a + b = b + a

• (F, - {o}, ∙) is a commutative (multiplicative) group. 

 (identity) : a × 1 = a = 1 × a

 (inverse) : a × a−1 = 1 = a−1 × a  if a ≠ 0

 (associativity) : (a × b) × c = a × (b × c)

 (commutativity) : a × b = b × a

• ( F,+,·)

 (distributivity) : a ×(b + c) = a× b + a × c
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Attack on the RSA algorithm

• Brute force

• Trying all possible private keys.

• Countermeasure

 Use a large key space

• However, the larger the size of the key, the slower the system will run.

• Mathematical attack

• Three approaches 

 N a case that can be factorization into two primes 

 No suitable algorithm

 p and q is the determined directly without determining L 

 Difficult as factorization

 Determining a first D directly without determining the L

 Difficult as factorization
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Attack on the RSA algorithm

• When the running time of a cryptographic algorithm is nonconstant, timing measurements can leak 
information about the secret key.

• Countermearsures

• Constant exponentiation time :

 Ensure that all exponentiations take the same amount of time before returning a result.

• Random delay : 

 Better performance could be achieved by adding a random delay to the exponentiation 
algorithm

• Blinding : 

 Multiply the ciphertext by a random number before performing exponentiation.
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Attack on the RSA algorithm

1. Alice sends an encrypted message M: E(K2, M).

2. Darth intercepts the encrypted message and decrypts it to recover M.

3. Darth sends Bob E(K1, M) or E(K1, M′), where M′ is any message. 

4. In the first case, Darth simply wants to eavesdrop on the communication without Altering it. 

5. In the second case, Darth wants to modify the message going to Bob.
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Thank you
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