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Abstract

* This Paper presented the novel federated deep learning (DL) model (Fed-TH) for hunting cyber threats against industrial
cyber-physical systems (ICPSs) that captures the temporal and spatial representations of network data.

* The container-based industrial edge computing framework is designed to deploy this model as a threat-hunting microservice on
suitable edge servers.

* An exploratory microservice placement method is introduced to enable better microservice deployment to tackle the latency
issue.
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1. Introduction

Cyber-physical systems (ICPS) consist of different [oT technologies, such as software-defined networking, fifth-generation
(5G) and beyond 5G (B5G) networks, cloud computing, mobile edge computing (MEC), and standard industrial control
systems.

Heterogeneous, wide-scale, distributed, and intricate nature of an ICPS causes many common and application-related
vulnerabilities that can be abused by attackers to execute malicious actions.

For Increasing data transfer models, MEC intends to bring computations from the cloud to a network’s edges to minimize
the network’s latency and bandwidth congestion.

Deep learning (DL) has shown promising performances in developing efficient threat intelligence (TI) in autonomous
industrial (IToT) networks. It is challenging to develop a distributed DL at edge nodes owing to resource constraints and
privacy matters, including data eavesdropping and leakage.

Federated learning (FL) is an encouraging approach that has achieved great success in delivering intelligence to the edge
layers of IoT networks with participating devices using local data. Eliminates privacy issues by sharing local updates
instead of raw data.



1. Introduction(cont..)

A. Main Challenges:
a)  Security: The combination of ICPS and 5G network allows cyber threat which affects on the industrial process.

b)  Heterogeneity: microservice design is prone to large slowdowns and/or run-time collisions because of the heterogeneity
of ESs stemming from high variations in transient network interrupts memory footprints and the frequencies of central
processing unit (CPU) cycles.

c) Privacy: Current FL cannot fully guarantee the preservation of the privacy of participating entities as the central authority
(cloud) is often presumed to be completely trustworthy for managing training.

d) Latency: ICPS often entails time-critical tasks, rapid responses and low latency values are necessary.

B. Primary Contributions :
To overcome Mention challenges author proposed a new threat-hunting approach for IIoT networks is briefly discussed in the

following.
2) A DL model (Deep-TH) for detecting cyber threats in an ICPS is presented.
3) Container-based industrial edge computing (CIEC) framework is introduced to incorporate the Deep-TH in a differentially

private FL framework referred to as Fed-TH.
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2. Literature Review

The methodology for conducting the experiments in this study is discussed under three different aspects including the empirical
settings, evaluation datasets, and performance measures.

A. Cyber-Threat Intelligence for ICPSs

* In this context, author Li et al. introduced a new DL approach for recognizing intrusions in ICPSs, with a gated recurrent unit

(GRU) and convolutional neural network (CNN)to show different classes of attacks.

e Zhou et al. [10] addressed intrusion detection with a variational LSTM model that employs an encoder-decoder architecture

accompanied by a variational method to learn the low-dimensional patterns from high-dimensional IoT data. following are
shortcoming;:

* They ignored the data’s heterogeneity during training which is common for ICPSs.
* The majority of ICPS-related TI methods were designed to hypothesise that enough excellent samples of cyber threats on

ICPSs were constantly obtainable for designing intelligent detection models. realistically, one ICPS terminal has few
cyber-threat samples causes the development of a DL model challenging.

* ICPS holders are customarily unwilling to disclose their data due to the sensitivity and privacy of data hence developing a
reliable DL model for cyber-threat hunting or detection in ICPSs is a complex challenge.

B. Microservice-Based IoT Applications

Microservice-based solutions have been developed to improve the flexibility of IoT networks.

Many Papers were researched with different technology but Unfortunately, none of these studies considered a microservice
design for TI applications.

The development of smart industrial services consisting of multiple microservices with intrinsically complicated dependencies
still requires careful planning to achieve the efficient latency of TI services on the edge side of a network.



3. System Design

The framework of the proposed system consists of three primary components, i.e., containerized edge nodes (e.g.,edge services(ESs) or mobile
devices), a cloud server, and an IoT network.

A. Cloud Backend

The cloud backend is responsible for constructing a final threat-hunting model by federating the parameters of an edge-trained one. It
manages the distributed training of Fed-TH.

Consist of four main distinct modules

1. Resource Manager (R): Retain the resource profile of each Industrial agent involved in federated training. The system takes
into account edge resources.

2. Service Manager (S): Retain the profile of every active service/microservice. microservice reliance, resource obligations.
3. Scheduler (S): Liable for deciding on the strategy for deploying threat-hunting microservices.
4. Deployer (D): Accountable for deploying and initiating all threat-hunting microservices.

B. Microservice-Based IoT Applications

* Microservice-based solutions have been developed to improve the flexibility of IoT networks. many studies are carried out
but Unfortunately, none of these studies considered a microservice design for T1 applications.

* Development of smart industrial services consisting of multiple microservices with intrinsically complicated dependencies
still requires careful planning to achieve the efficient latency of TI services on the edge side of a network.

C. Containerized Edge Tier

« Edge Services entities are computational entities of CIEC responsible for delivering remote edge-based microservices.
The ESs communicate with the IPs through a direct channel to decrease broadcast dormancy.

D. Microservice Placement

* Exploratory microservice placement (EMP) method (Algorithm 1) is introduced to compare the computational delays and local
and remote discharging. This process consists of two procedures

* An offloading policy determination whereby
* A microservice placement whereby



Algorithm 2: Federated Training of Fed-TH.

Input: N subsets of database {D', D*.--- . D™}, batch
size B.

Qutput: Federated optimal parameters (w) of Fed-TH.

1:  Set initial parameters w" for all participants.

2 t=0.

3: ESs perform.

4 Fori = | to N do:

5 The ith ES request gradients (gg ‘') from
cloud.

6: The local parameters (-wf) updated by (21).

7: Calculate the noised parameter (ﬁ) using (24)
to achieve LDP.

8: The ithES compute the local gradients [g,* by
(20).

9: Upload the filtered gradient by (23).

10: t=t+1

11: Cloud performs.
12: Aggregate gradients form ESs.

13: Calculate the mean gradient (gg *) by (22).

14: Broadcast filtered gradient (9g") by (23) to the
ESs.

15: Repeat from lines 3 to 14 until the Fed-TH
converges.

16: Return the final parameters (w) of Fed-TH.

Algorithm 1: EMP Method
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4.Proposed FED-TH

In this section design of the author’s proposed model for cyber
threat hunting in an edge-based ICPS is described. In Fig. 2, a
systematic diagram of its structural design is comprised of three
main blocks.

A.

Multiscale Spatial Representation Block

* The main role of this block is to learn efficient spatial
representations in ICPS data sequences.

* Finds a high-level spatial representation which causes it
to miss or leak information across layers.

* In the proposed model two MSR blocks are stacked to
learn spatial representations in the data.

Temporal Learning (TL) Block

 This 1s a different enhanced TL block that, for the first
time, involves an AE and GRU (AE-GRU) inspired by a
Recurrent Neural Network-based AE.

Decision Block

« This block takes the extracted representations and

processes them to obtain the final classification decision
using FCLs and SoftMax.

Federated Training

 Each ES trains its own Deep-TH locally on its local
dataset using the adaptive stochastic gradient descent
algorithm.

Input sequences

Multi-scale spatial representation blocks

o -

Decision blocks

Temporal representation block

Fig 2. Architecture of proposed Deep-TH model
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5. Experimentation Strategy

The methodology for conducting the experiments in this study is discussed under three
different aspects including the empirical settings, evaluation datasets, and performance
measures.

A. Empirical Settings

The implementation process for the models is coded in a Python 3.7 environment
using a PyTorch library. Optimal hyperparameters of the proposed Fed-TH are
determined based on grid-search experiments in Table 1.

B. Descriptions of Datasets

The proposed model is evaluated using the ToN IoT [8] and LITNET-2020
datasets. contains aggregated labelled IoT/IIoT data including heterogeneous data
sources of [oT traffic. Its distribution information is presented in table 2. its main
characteristics and distributions are shown in table 3.

C. Data Prepreparation

some preprocessing steps are applied to the raw data. to avoid the effect of large
discrepancies between the values of different features, min—max normalization is
applied to rescale them into the range of [01] as

L — Lmin
I

normalized — aor
Lmax — Lmin

Parameters represent the current instances. To mitigate the impact of class
imbalance, the adaptive synthetic sampling technique is employed to adaptively
generate more synthetic samples.

FL experiments, the training data are equally distributed across the containerized
edge nodes.
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Table 1. Hyperparameters of proposed FED-TH

Hyperparameter Value
Batch size |28
No. of epochs |50
No.r of rounds 20
Optimizer Adam
Imtial leaming rate 0.007
No. of GRU layers 2
=

No. of MSR blocks
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Table 2. Characteristics of ToN IoT Dataset

. No. of Distribution
Device 2 Features Class e
samples
Fridge 587076 Ts,Date, Time,Fridge_tempreature, Backdoor 246136
Garage 591446 &mp_condém;n.Datg,anrI\e.La e Lot Ddos 53992
: or_state,Sphone_signal, Latitude,Longitude, o
M?xl]): ;gg(;gg Motion status, Signal status, :uecll(:n ;ggégn
— = FC1_Read Input_Register,FC2_Read Descret ——ornid =
Motion 452261 valye, FC3_Read_Holding_Register, Password 142674
Thermostat 442228 FC4_Read_Coil,Current_temperature, Ranso.mware 16030
Weather 650242 Thermostat_status, Temperature, Humidity, Scanning 3973
/ / Pressure, Label, T ype Xss 6037
Table 4. Characteristics of LITNET-2020 Dataset
Exporter Features Class Distribution
ts_year, ts_month,ts_day, ts_hour, ts_min, Packet fragmentation 477
Wiiiia Aviantan Masins ts_second. te_year. te_montht,_day. te_hour, _attack (Al)
Univcrsity): 23 Kaunai te_min, te_second. td, sa, da.sp.dp. pr, Spam bot’s detection 747
Toctmological Uiiversity _flagl, _ fag2, flag3, flagd, flags, flag6,  (A2)
KTU) g fwd, stos, ipkt, ibyt, opkt, obyt, _in, out, Reaper Worm(A3) 1176
Vilnim; Gediminas Technical sasdas', s, dmk, d.los. dit,ah, nhb, svin, Scanning/Spread(A4) 6232
University, Klaipeda dvin, isme, odme, idme, osme, mplsl, mpls2,  JCMP-flood(AS) 11.628
Direaaity mpls3, mplsd, mpls5, mpls6,  mpls7.  mpls8, "~ HTTp_flood (A6) 22.959
Siauliai University, Ipla9, mpieiliol sl &, gy exid, 1 _Blesiee Worm(A7) 24,291
IS AR icmp_dst_ip_b,icmp_src_ip udp_dst_p,
KTU Pancycz)sFacul}y of tep_fs, tep_fna tep_fnf tep_fnr, LAND attack(AS) 22 M7
Technologies and Business e e ey e Smurf(A9) 59,479
Kaunas University of icp_£.0.p,top £ 0:u, “cp_dstp, UDP-flood(A10) 93,583
Technolo tep_src_dst_{ s, tep_src_tftp.  tep_src_kerb, Code Red Worm(AT1) 3 5‘5 703
gy tep_sre_rpe,tep_dst_p_sre, smtp_dst, Aol E S 3‘;25‘838

dp_p_r_range, p_range_dst, udp_src_p. TCP SYN-flood (A12)
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6. Experiments and Analysis

A.

Results :

experiments conducted in the paper study
evaluate the proposed framework under a
multiclass scenario.

In table 4 1t can be observed that the normal

and XSS classes have high precision values of
94.88% and 92.10%, respectively.

In Table 5, it is clear that the code red worm
and TCP SYN-flood classes achieve high
precision values of 93.96% and 93.59%
representing the capabilities of Fed-TH to
efficiently recognize different forms of
cyber-physical attacks.

B. Comparative Analyses:

SeoulTech UC

With the ToN IoT dataset, Fed-TH achieves a
performance improvement (accuracy 2.6%
and F1-score 1.6%).

With LITNET-2020 dataset, , Fed-TH
achieves a performance improvement
(accuracy 2.2% and F1-score 1.9%).

L.ab

Table 4. Confusion Matrix of FED-TH on TON IOT Dataset

Predicted Classes
S Backdoor  DDos  Injection  Normal Password Ransomware  Scanning XSS R(%)  FI(%)
Backdoor 44476 301 101 3433 289 131 287 209 90.35%  90.91%
§ DDos 211 27905 308 1647 167 227 199 137 90,61%  90.29%
= Injection 105 222 27898 1123 |88 234 193 101 92.80% 91.95%
o Normal 2871 1891 1245 206427 [134 1453 1131 1243 9495% 94.92%
E Password 305 103 271 1156 26094 159 249 198 9145% 91.27%
- Ransomware 183 129 323 1417 354 26163 313 324 89.58%  90.03%
Scanning 243 209 206 1139 205 341 28209 243 91.60%  91.62%
XSS 228 254 266 1213 211 207 201 28627  91.73% 91.92%
P (%) 91.47% 8998%  91.13%  94.88% 91.10% 90.48% 91.64%  92.10%
Table 5. Confusion Matrix of FED-TH on F LITNET-2020 Dataset
Predicted Classes
Al A2 A3 A4 AS A6 A7 A8 A9 Al0 All Al2  R(%) F1(%)
Al 10095 15 8 24 5 7 46 11 16 2 573 493 89.38  R9.58
A2 S 10276 6 3 11 7 0 6 18 2 502 513 90.55  90.10
A3 7 2212940 39 18 31 29 103 44 16 502 484 9090  90.48
T A4 71 89 62 14483 33 47 28 27 31 51 511 613 9026  90.54
2 A3 24 59 18 15 14968 1 9 6 7 8 599 602 9168  90.76
E Ab 113 84 23 4 8 13409 3 14 7 5 488 434 91.89 91.12
2 AT 89 2 21 2 5 15 15282 11 3 0 613 796 90.65  90.49
< A8 34 54 88 1 19 0 57 14608 33 55 822 702 8862 §9.84
A9 43 97 31 24 0 10 23 5 15884 7 819 953 8876  88.33
A0 16 29 14 13 18 7 8 16 28 17612 1109 1847 8501  86.94
All 323 302 415 717 774 516 813 615 913 1039 236442 8271 94,15  94.06
Al2 424 413 743 612 798 779 621 614 1084 9%9 8648 229433 9358 93.59
P (%) 8978  89.66 9005 9082  89.86 9036 9032 91.10 8791 8897 9396  93.59
13



6. Experiments and Analysis (cont..)

D. Federated Versus Central Learning

The performance of the proposed Fed-TH is
with local wvariants built locally with a
centrally built version of the Fed-TH trained
on all data samples as shown in fig 5.

A threat-intelligence solution suitable for all
ICPS owners because of its high efficiency,
awareness of heterogeneity and
privacy-preserving characteristics.

E. Number of Communication Rounds

In fig.6 graph analyze the number of
communication  rounds  required  for
convergence during the training procedures.
15 and 12 rounds which shows efficient
communication overhead.

F. Tradeoff Between Privacy and Accuracy

The proposed Fed-TH is evaluated to analyze its
variations in accuracy under various privacy budgets.
Obtaining greater privacy necessitates a smaller
value which implies that more Gaussian noise must
be added. From fig 7 shows it is found satisfactory.
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6. Experiments and Analysis (cont..)

G. Microservice Placement in CIEC Framework:

Performances of microservice placements are evaluated in terms
of average latency.

1) Comparative Analysis: It can be seen that in fig. 8 a cloud
placement obtains the worst latency owing to its communication
delay. The random and FIFO methods achieve high latency
values in the CIEC framework since unaware of network
information and resource consumption.

There are various graphs comparing with latency
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7. Advantages and Disadvantages of proposed Federated Threat-Hunting approach

* Advantages
l.  Use of Proposed model for complex and heterogeneous data.

Il. It improves the real-time performance of threat detection in an ICPS as the first attempt to
consider deploying a federated model as a threat-hunting microservice.

lIl.  This is the first study to introduce a differentially private FL. model for detecting cyber
attacks in containerized heterogeneous edge computing devices.

* Disadvantages

|.  Limitation on the amount of data heterogeneity due to widely available unlabeled data is still
unable to be exploited during federated training.

Il.  Detection performances might be negatively impacted due to differential privacy.

IIl.  malicious or improper ones can cause catastrophic consequences since the proposed system
presumes that all the participants are trusted and suitable to engage in the training.

SeoulTech UC
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8. Conclusion

 This paper shows the efficiency of collaboration in the edge-cloud environment for Preserving the
privacy of participants.

* For latency-effective placements a CIEC framework is introduced to integrate the Fed-TH in a
microservice-based architecture.

» Extensive analysis reveal the accuracy and latency of the framework.
* Load balancing in multicloud IIoT environments can be explored for Future improvements.

* Severance deployment strategy for installing a single TI microservice on various ESs might be an
expansion of this paper.
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