
A Survey on Cross-Architectural IoT

Malware Hunting

~ Part 01 ~

Written By: Raju et. al,.

(School of Computing Science , Simon Fraser University, Canada)

Presented By: 제레미아

Course: Advanced Security in Emerging ICT

Monday, October 31, 2022 (Week - 09)

PART 1 – INTRO, BACKGROUND & TAXONOMY

1. Introduction ~ Background

2. IoT Malware Hunting Background

✓ A: ELF File Formats (Linux)

✓ B: IoT CPU Architectures

✓ C: IoT OS Platforms

✓ D: Feature Extraction Tools for ELF Static Analysis

✓ E: Malware Threat Hunting Approaches

3. Taxonomy

✓ A: Metric Based

1. High level Features: ELF Header, Strings, Symbol Table, System Call and APIs.

2. Assembly Level Features: Opcodes & Mnemonics

3. Machine Level Features: Static emulation,

✓ B : Graph / Tree-Based Features

1. Graph Based Features

2. Tree Based Features

✓ C: Sequence- Based Features

1. 1-D Sequence: (Byte sequence, assembly instruction sequence, entropy sequence, short sequence,)

2. 2-D Sequence: (Grayscale image, color image)

3. 3-D Sequence (Latent projection,)

✓ D: Interdependence

(File to machine relation, file to file relation)

✓ E: Dynamic Analysis
2.

1.

INTRODUCTION

1. Introduction / Background:

❑ In recent years, the increase in non-Windows malware threats had turned

the focus of the cybersecurity community.

❑ Research works on hunting Windows PE-based malwares are maturing,

whereas the developments on Linux malware threat hunting are relatively

scarce

❑ With the advent of the Internet of Things (IoT) era, smart devices that are

getting integrated into human life have become a hackers’ highway for their

malicious activities

✓ This study provides a comprehensive survey on the latest developments

in cross-architectural IoT malware detection and classification

approaches.

✓ The study discuss the feature representations, feature extraction

techniques, and machine learning models employed in the surveyed

works

3.

1.

INTRODUCTION

1. Introduction / Background:

❑ In the past two decades, the machine learning approaches adapted to

the domain of malware detection/classification strove towards

convergence at better handling of malware threats as hard as zero-day

attacks

❑ Malware attacks are steadily on the rise where some financially

motivated attacks target big industry players but some attacks (60%)

are directed towards small and mid-sized businesses.

❑ Such attacks are estimated to cause a worldwide damage of

approximately 6 Trillion in 2021 and expected to rise to 10.5 Trillion

by 2025. Overall ransomware attacks grew by 150% in 2020.

❑ Reasons accounting for this rise includes:

✓ Availability of Malware groups such as Egrogor and Netwalker which

provides Ransomware-as-a-service (RaaS) accounting for 64% of the

total ransomware attacks.

✓ IoT devices are deemed to be the most targeted at present. Even

wearables as FitBit devices are also vulnerable to getting hacked which

puts in danger the PII (Personal Identifiable Information)

4.

1.

INTRODUCTION

1. Introduction / Background:

❑ Surprisingly, smart connected devices such as security cameras,

refrigerators, and toasters were part of the BotNets (roBot Networks)

in the infamous massive DDoS (Distributed Denial of Service) cyber-

attack against Dyn DNS provider by Mirai which caused parts of the

world inaccessible to major sites like Airbnb, Twitter, PayPal, GitHub,

Amazon, Netflix

❑ DDoS attacks via BotNets are now the extensively used distributed

attack source targeting T devices, and their strains spread over 25

different malware families.

❑ DDoS-for-hire had become one of the trending hack-for-hire services,

where botnets with GBps to TBps attack bandwidth are being sold in

the underground forums of the dark web. In light of the above

mentioned issues:

✓ The problem of malware detection and/or classification continues to be

a topic of much importance.

✓ This paper address this problem of detecting and/or classifying the

malware threats commonly with the term ‘Malware Threat Hunting’.

5.

2. IoT Malware Background

❑ Internet-of-Things (IoT) is a large set of devices connected via the private or public

internet, and that is infused with the ability to talk to each other streaming real-time data

with less or no intervention required from humans, thereby building a unified intelligence.

✓ What is considered an IoT device?? Nowadays, devices of any size with a chip

installed for enabling centralized control, device-to-device control, wireless sensor

networks, and embedded systems are considered IoT devices.

✓ For example, security motion sensors, smartphones, voice assistant-controlled home

automation devices like TVs, speakers, home lighting systems are considered IoT

devices.

❑ IoT Devices Features:

✓ IoT devices are generally equipped with less computing and storage compared to

traditional laptops and PCs which impose tight constraints leading to the need of

specialized OS and CPU architecture

✓ Windows, Linux, Android, iOS dominates Laptops, PC, Servers and mobile devices but

they are not suitable for embedded device in constrained IoT space.

2.

IoT MALWARE

BACKGROUND

6.

2. IoT Malware Background

❑ An OS for IoT device should be lightweight to support the minimal hardware

yet following security requirements. Linux flavors and distributions such as

Ubuntu core, Raspian (Debian) supports such requirements and hence are

widely used by the IoT developers.

❑ ELF-based malware gained attention from the cybersecurity community only

in the mid of the past decade when a large number of samples started

accumulating with VirusTotal before which it was generally believed that Linux

was not as vulnerable as Windows

❑ OSes such as Windows and Android would follow a one-of-a-kind approach

and usually make use of features tailored for that specific OS and would not

be transferable to other OSes

✓ Techniques proposed for Linux ELF threat hunting suffer from not being

able to follow the many-of-the-same-kind approach to accommodate the

multiple distributions and variants within the Linux landscape

2.

IoT MALWARE

BACKGROUND

7.

RANKING OF OPERATING
SYSTEMS FOR IOT

8.

✓Overall: From Figure 1, it can
be seen that, Linux variants are
the most utilized operating
systems for IoT devices,
according to a survey by
Eclipse Foundation (2018)

✓ As of 2020, Linux and
FreeRTOS were the top OSes
IoT developers preferred with
43% and 35% ratings,
respectively.

Overview:

RANKING AMONG LINUX
DISTROS FOR IoT

9.

✓ Figure 2 illustrates the ranking
among distros within Linux.

✓ Lastly, Despite the differences
in many flavors of Linux, much
of the existing research work
on IoT malware threat hunting
declare the problem of
handling the different CPU
architectures such as MIPS,
AARCH, and ARM, as the
prominent challenge being
encountered.

Overview:

10.

A: ELF FILE FORMAT

❑ Executable and Linkable Format (ELF) is the standard binary
file format for the file types Linux executables, used by
operating systems like Linux, BSD, Solaris, BeOS, and Android.

✓ ELF have cross-platform properties: this property allows ELF to
be used across different CPU architectures: Intel (x86, x64), ARM,
MIPS, Motorola, SPARC, PowerPC, Renesas SH, Motorola m68k,
and different target devices: Routers, Printers, Cameras, etc.

❑ Figure 3 illustrates the general ELF file format. ELF file is
composed of three major categories:

✓ Program Header that aids in handling memory segments during
run time execution by providing information to the system on
how to create process images,

✓ The individual ‘sections’ that hold various types of information
such as ‘code’ and ‘text,’ and finally,

✓ The Section Header that describes the various file sections such
as their offset information and also helps in linking and relocation
process.

11.

A: ELF FILE FORMAT (Continued…)

❑ There are two types of views:

1. Linking view, where the sections and the section header
table are important but the program header table is
optional;

2. Execution view, where the segments and the program
header table are important, but the section header table is
optional.

❑ Table 1 (next slide) provides a list of some segment types
typically found in an ELF binary.

❑ Windows PE file format and Linux ELF file format are
similar in structure in that both use a Header that defines
meta-information about the rest of the file structure, and
in that, both formats use a Section Header to define the
individual sections.

TYPES OF SEGMENT ENTRIES IN ELF

12

B: IoT CPU ARCHITECTURES:

❑ The rapid proliferation of IoT devices that can perform an
assortment of functionalities calls for complex product design across
the IoT landscape to achieve high performance with low power
demands.

❑ Each CPU architecture in the IoT market is built for a specific
purpose under various constraints that arise due to the trade-offs
between power and performance.

❑ The complexity is compounded with recent developments in IoT to
support Artificial Intelligence and Machine learning tasks which
require far greater performance, power, and latency requirements.

✓ Examples CPU Architectures: x86, ARM, MIPS, SPARC,
AARCH64, PowerPC, Renesas SH, Motorola 68020.

13.

C: IoT OS PLATFORMS:

❑ Similar to standard operating systems like Windows, iOS, and Linux, the
IoT operating systems are expected to manage the embedded device
functions but operate under the limited memory footprint, power, and
processing capabilities.

❑ Some open-source operating systems for IoT include:

✓ Raspbian, Contiki, FreeRTOS, Ubuntu Core, ARM mbed, Yocto, Apache
Mynewt, and Zephyr OS and some of the commercial IoT OSes include
Windows 10 IoT, Android Things, WindRiver VxWorks, Freescale MQX,
Mentor Graphics Nucleus RTOS, Express Logic ThreadX, TI RTOS and
Particle.

❑ In light of these diverse OSes, it is crucial to choose feature representations
with capabilities for OS platform independence.

14.

D: FEATURE EXTRACTION TOOLS FOR ELF
STATIC ANALYSIS:

❑ A Linux-based operating system interprets the desired machine
instructions using the formal ELF file format specification, which is the
binary output format of a compiler or linker [54].

❑ In Table 2 (next slide), authors provided a short overview of the tools,
including the tools used in surveyed works, that are helpful to analyze,
debug and extract useful information from ELF files.

❑ Many of the surveyed works used the scanning services such as
VirusTotal, Shodan, and Zmap to label their ground truth and validate
the datasets employed in their studies.

15.

16

E: MALWARE THREAT HUNTING
APPROACHES:

❑ The malware analysis phases involved in the malware threat hunting
process can be generally classified into static, dynamic, and hybrid
analysis categories

❑ Static malware analysis occurs when a binary file is reverse
engineered, disassembled, or dissected using different tools, then
analyzed using various structural and semantical information found
in the binary file without execution. This method is susceptible to
evasive methods like anti-disassembly, code obfuscation techniques.

❑ Dynamic analysis is a behavioral method that observes or debugs
a malware’s behavior in an isolated environment such as sandboxes.
Dynamic methods are also susceptible to evasive techniques such as
anti-debugging and differed execution.

❑ Hybrid analysis combines both static and analysis methods.
17.

18.

❑Ngo et al. [22] claimed that the static analysis method has more ability than dynamic methods in

analyzing malware structure without the need to consider processor architecture. Figure 4

provides a sample basic information that can be obtained using Linux ‘file’ command.

❑As shown in Figure 4, symbol, debugging, and relocation information could be stripped from an ELF

binary to make them lightweight.

❑However, studies have shown that IoT malwares are mostly statically linked [35] and not stripped

to reduce the dependency on the diverse IoT execution environments and avoid runtime failures.

It also makes them hard to analyze under static analysis.

Overview:

19.

✓ Figure 5 illustrates the generic machine
learning-based pipeline for static malware
threat hunting.

✓ It also showcases where the feature extraction
tools described in Section II-D and the modern
taxonomy described in Section III fit the
pipeline.

Overview:

3.TAXONOMY

❑ This section provides a taxonomy of feature representations used for static

analysis-based malware threat hunting in the IoT landscape. Highlighted

features are specifically useful for cross-architectural IoT malware threat

hunting and they’re OS platform independent.

✓ Figure 6 (next slide) provides the categorization of the feature representations

based on four major divisions, namely: metric-based, graph/tree-based, sequence-

based, and interdependence.

✓ These divisions encompass representations extracted from the content within a

sample, such as strings and opcodes, as well as the external characteristics of a

sample such as file-to-machine relations

3.

TAXONOMY

20.

RANSOMWARE DEFENSE OVERVIEW IN LITERATURE.

21

A: METRIC BASED

1. High-Level Features:

✓ High level informative metrics that can be extracted from binaries and used as

features includes the following:

A. ELF Header: ELF Header stores rich structural information that is

important to support the framework , such as file’s magic data, class (32-bit

or 64-bit), entry points, target application binary interface (ABI), file

interpretation indicators etc.

B. Strings: Strings may contain some human-readable strings or sequence of

characters within the binary content such as IP addresses, DLL names,

error messages, and code comments

C. Symbol Table: It acts as the lookup table holding the location and

relocation information of symbolic references in a binary file to sup port

the processes of linking and debugging.

D. System Calls and APIs: act as an interface to access the OS provided

services such as file and device management operations, controlling

processes and communications. APIs are system call wrappers written in

high-level languages.

3.

TAXONOMY

22.

A: METRIC BASED

2.Assembly-Level Features:

A. Opcodes and Mnemonics: Opcodes (Operation codes) are unique

and atomic executable instructions close to machine code. Opcodes

have proved to be more useful in detecting and classifying malwares.

Mnemonics are a special form of opcodes with symbolic names that are

self-explanatory and easily understood by humans.

✓ Tables 3 (Below) and 4 (next slide) showcases such an example of

architecture dependency using the Mirai botnet disassembly for its

‘dvrHelper’ function call

✓ Different notations are used for the same operation by different processor

architectures. dvrHelper is a DDoS attack module equipped with features

to bypass anti-DDoS solutions.

3.

TAXONOMY

23.

24

A: METRIC BASED

3. Machine Level Features:

❑ Static Emulation: The static emulation is inspired by dynamic

analysis on emulated environments using software tools like

QEMU. Static emulation refers to the analysis of loadable parts of

the program.

 For instance, in Figure 3 (Slides 10 & 11), the segments PT

_LOAD0 and PT _LOAD1 denote sections that will be

loaded for execution during runtime.

3.

TAXONOMY

25.

B: GRAPH/TREE BASED FEATURES

1. Graph-Based Features:

 They are an extended version of metric-based features discussed above,

where the relationship among the features is also accounted for and

expressed. The nodes in the graph usually represent the actual metric-based

features like APIs,

1.Tree-Based Features:

 Abstract Syntax Trees (ASTs) are the tree representations generated using

parsers over the code constructs found in a source code’s syntactic

structure, and tree-based machine learning approaches are later employed

to learn the latent information they hold. Being a byproduct of the

compiler’s syntax analysis phase, ASTs are useful for analyzing or

transforming programs to a more simplified view for better understanding.

3.

TAXONOMY

26.

C: SEQUENCE BASED FEATURES

1. 1-D SEQUENCE:

A. Byte Sequence: It is a sequential representation of byte-level data present

in binary files, where each byte is converted into an 8-bit integer (unsigned)

and translated to numerical representation with values ranging from 0 to

255.

B. Assembly Instructions Sequence: Assembly instructions extracted

from a disassembled binary are concatenated into a one-dimensional

sequence. The operands and registers may be pruned out to reduce

sequence length. Tokenization or embedding of the resulting sequence may

be required.

C. Entropy Sequence: It is the sequence of rolling entropy obtained by

scanning a series of short windows of byte sequences [28], assembly

instruction sequences, or simply the whole file [8].

D. Short Code Sequence: This is a special case of very short byte

sequences. They divide long sequences into several disjoint or overlapping

short sequences, typically comprising sequences of 2 to 11-byte length,

generally called n-gram byte sequences, where ‘n’ denotes the sequence

length.

3.

TAXONOMY

27.

C: SEQUENCE BASED FEATURES

2. 2-D SEQUENCE:

A. Gray Scale Image: A two-dimensional image-like representation is

obtained by reshaping and then resizing the one-dimensional byte sequence

representation discussed above. Such 2-dimensional representations are

usually downscaled to avoid computational overheads.

B. Color Image: It is an extension of the grayscale representation described

above, where conversion to a colored format is done by extending

grayscale values to RGB channel values using tools like BinVis.

3. 3-D SEQUENCE:

A. Latent Projection: Unlike dynamic analysis, the use of three-dimensional

projection of latent information is still largely unexplored for static analysis

3.

TAXONOMY

28.

D: INTERDEPENDENCE
❑ The features for static analysis discussed so far dealt with the structural properties of

an ELF binary, its code-level properties, and its section and segment-level components.
All of them are obtained from within the binary, hence, treated as ‘Intra-file’ properties.
The ‘interdependence’ deals with the properties that are external to the binary and is
concerned about its proximities with the surrounding environment.

A. File to Machine Relation: t represents the absolute or relative path

information of a binary file which could provide contextual information

with the capacity to reveal benign or malicious intents .

B. File to File Relation: It deals with the influences that a file inherits

directly or indirectly from co-occurring files in the environment [60], [71],

[72]. The variations in the importance of such relations to a malware file as

opposed to a benign file help isolate malicious files.

3.

TAXONOMY

29.

E: DYANAMIC ANALYSIS

❑ Dynamic analysis was not in the scope of this survey paper. However, authors provided a
high-level taxonomy of dynamic features observed in the literature that can be
categorized into traced-based and usage-based features.

A. Traced Based: These features deal with acquiring knowledge about

malware activities and interactions over a period of time, such as tracing the

API calls made by malware, tracing the sequence of instructions they

executed, and their network interactions

B. Usage Based: These features deal with monitoring the usage of system

resources such as memory, registers, and file access.

C. File Placement: It is a specialized file monitoring technique where files are

placed in suspected locations of malware activity. For instance, when

ransomware tries to access the file to steal information, its file system

activity and access behavior are recorded for taking remedial actions in

reality.

3.

TAXONOMY

SECT~ 4… (ABIR EL.)

30.

