9장. 공개키 암호와 RSA

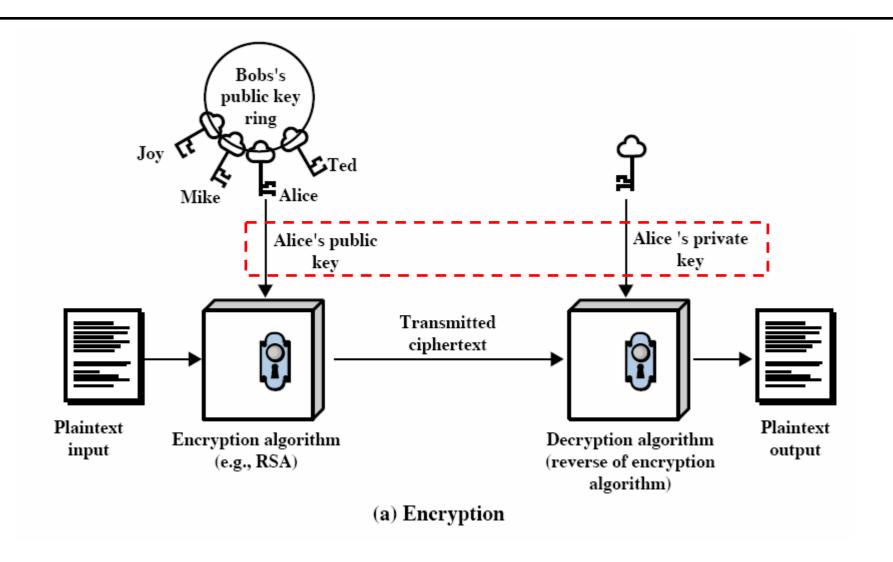
박 종 혁

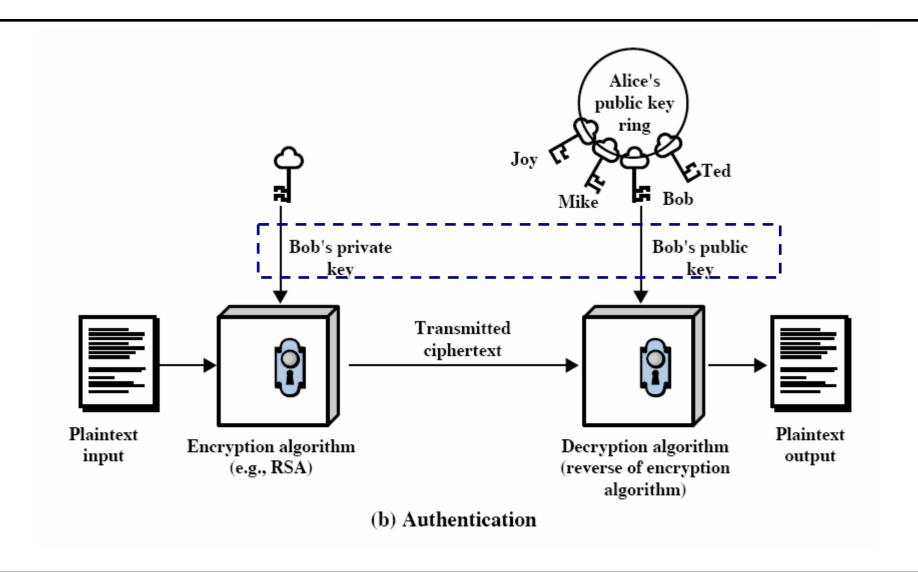
(jhpark1@snut.ackr)

http://www.parkjonghyuk.net

□ 목차

- 1. 암호 시스템의 원리
- 2. RSA 알고리즘


공개키 암호 시스템의 원리


□ 공개키 암호 시스템의 원리

- ❖ 공개키 암호 시스템의 특징
 - 주어진 암호 알고리즘과 암호키를 알고 있더라도 복호키를 결정하는 것은 계산적으로 실행 불가능
 - ▶ 두 개의 관련된 키에서 하나는 암호에 사용될 수 있고, 나머지는 복호에 사용됨
- ❖ 공개키 암호 구조의 구성 요소
 - ▶ 평문 : 읽을 수 있는 평문 메시지 또는 데이터
 - ▶ 암호 알고리즘 : 평문에 대하여 다양한 변형을 수행
 - 공개키와 개인키:하나는 암호화를 위하여 사용되고 다른 하나는 복호화를 위하여 사용되도록 선택된 키의 쌍
 - ▶ 암호문 : 출력으로써 변형된 메시지, 평문과 키에 의존적이며 주어진 하나의 메시지에 대하여 2개의 다른 키는 2개의 다른 암호문을 생성
 - 복호 알고리즘: 암호문과 대응하는 키를 받아서 본래의 평문을 생성

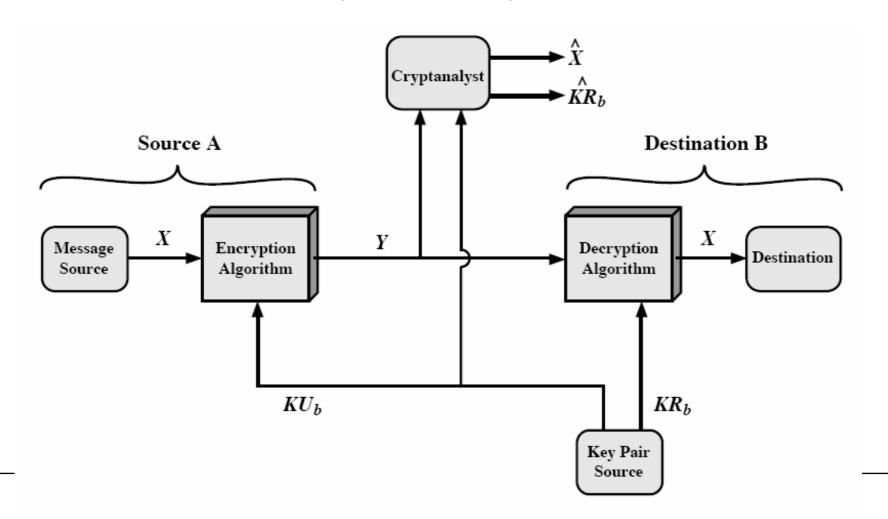
□ 공개키의 처리 단계

- 1. 각 사용자는 메시지의 암호화와 복호화에 사용하기 위한 키 쌍을 생성
- 2. 각 사용자는 공개된 등록처나 또는 접근 가능한 파일에서 2개의 키 중에 하나를 설 치(공개키), 대응되는 키는 비밀로 유지
- 3. 봅이 앨리스에게 비밀 메시지를 보내기 원하다면, 봅은 앨리스의 공개키를 사용하여 메시지를 암호화함
- 4. 앨리스가 메시지를 받았을 때, 앨리스는 자신의 개인키를 사용하여 복호화 함, 앨리 스만의 개인키를 알기 때문에 다른 수신자는 메시지를 복호화할 수 없음

□ 관용 암호와 공개키 암호

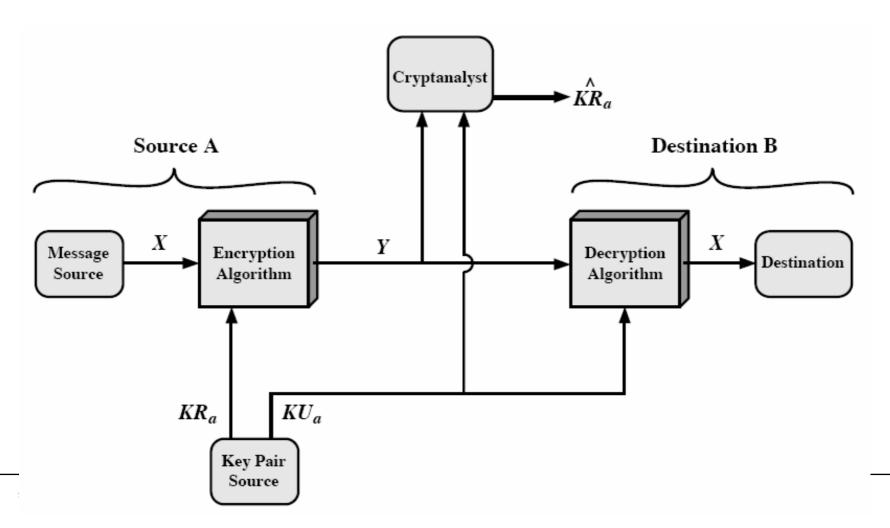
관용암호	공 개 키 암 호	
작업을 위한 요구 사항	작업을 위한 요구 사항	
1.같은 키를 가지는 같은 알고리즘이 암호와	1.하나의 알고리즘은 암호와 복호를 위한 키	
복호에 사용된다.	쌍으로 암호와 복호에 사용된다.	
2.송신자와 수신자는 알고리즘과 키를 분배	2.송신자와 수신자는 대응되는(동일한 것이	
해야만 한다.	아닌) 키의 쌍을 각각 가져야 한다.	

안전성을 위한 요구 사항

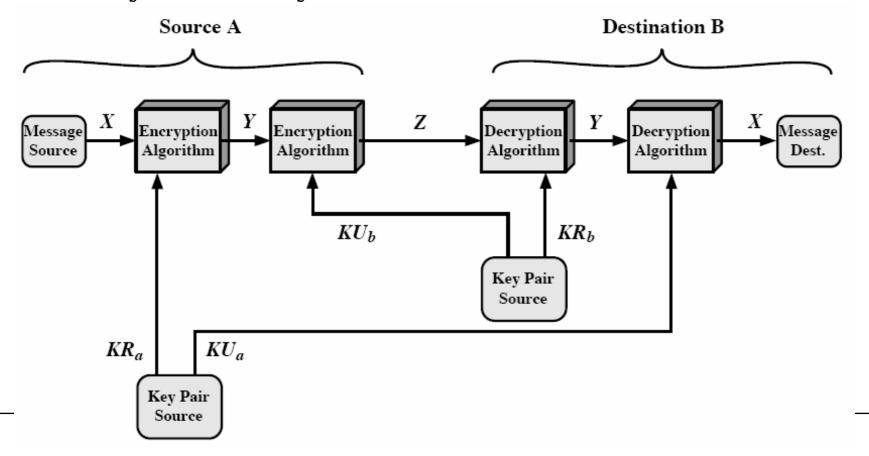

- 1.키는 비밀로 유지되어야 한다.
- 2.만약 다른 정보가 이용되지 않는다면 메시 지를 해독하는 것이 불가능하거나 적어도 비 실용적이어야 한다.
- 3.알고리즘과 암호문 샘플의 지식이 키를 결 정하지 못해야 한다.

안전성을 위한 요구사항

- 1.두 개의 키 중에서 하나는 비밀로 유지되어 야 한다.
- 2.만약 다른 정보가 이용되지 않는다면 메시 지를 해독하는 것이 불가능하거나 적어도 비 실용적이어야 한다.
- 3.알고리즘과 하나의 키와 암호문 샘플의 지식이 키를 결정하지 못해야 한다.


□ 공개키 암호 시스템: 기밀성

❖ X: 평문, Y: 암호문, KUb; b의 공개키, KRb; b의 개인키


□ 공개키 암호 시스템: 인증

❖ X : 평문, Y : 암호문, KUa: a의 공개키, KRa: a의 개인키

□ 공개키 암호 시스템: 기밀과 인증

- ❖ X: 평문, Y: 암호문(인증), Z: 암호문(인증 + 기밀)
- ❖ KUa: a의 공개키, KRa: a의 개인키
- ❖ KU_b: b의 공개키, KR_b: b의 개인키

□ 공개키 암호 시스템의 응용

- ❖ 암호/복호(Encryption/decryption)
 - 송신자는 수신자의 공개키로 메시지를 암호화 함
- ❖ 디지털 서명(Digital signature)
 - > 송신자는 개인키로 메시지에 서명 함
- ❖ 키 교환(Key exchange)
 - ▶ 양쪽은 세션키를 교환하기 위하여 상호 협력 함

알고리즘	암호화/복호화	디지털 서명	키 교환
RSA	가능	가능	가능
타원 곡선	가능	가능	가능
Diffie-Hellman 키 교환	불가능	불가능	가능
DSS (전자 서명 표준)	불가능	가능	불가능

RSA 알고리즘

□ RSA 알고리즘

❖ Ron Rivest, Adi Shamir and Len Adlema에 의해 1978년 공포

□ 알고리즘의 기본 형태

 $C = M^e \mod n$ $M = C^d \mod n = (M^e)^d \mod n = M^{ed} \mod n$

- 1. 모든 M < n 에 대하여 M^{ed} = M mod n을 만족하는 e, d, n 값을 찾는 것이 가능하다.
- 2. M < n 인 모든 값에 대하여 Me, Cd를 계산하기 쉽다.
- 3. 주어진 e 와 n에 대하여 d를 결정하기 어렵다.

□ RSA의 알고리즘

Key Generation

Select p, q p and q both prime, p q

Calculate $n = p \times q$

Calculate $\phi(n) = (p-1)(q-1)$

Select integer e $gcd(\phi(n), e) = 1; 1 < e < \phi(n)$

Calculate $d \equiv e^{-1} \mod \phi(n)$

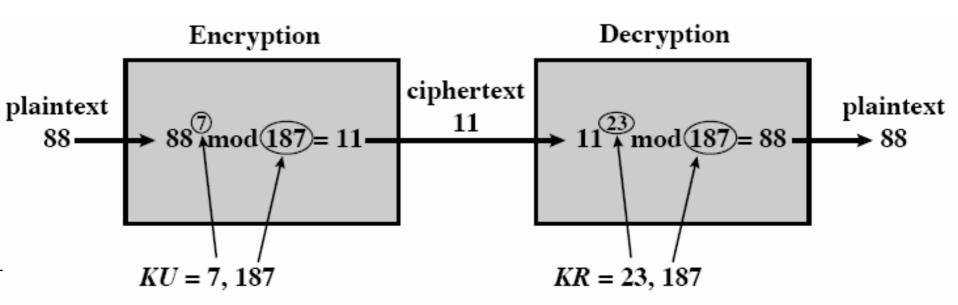
Public key $KU = \{e, n\}$

Private key $KR = \{d, n\}$

Encryption

Plaintext: M < n

Ciphertext: $C = M^e \pmod{n}$


Decryption

Ciphertext: C

Plaintext: $M = C^d \pmod{n}$

□ RSA 알고리즘의 예(책 pp.275)

- 1. 두 솟수 p = 17, q = 11을 선택
- 2. n = pq = 17 * 11 = 187을 계산
- 3. φ(n)=(p-1)(q-1) = 16 * 10 = 160을 계산
- 4. $\varphi(n)=160$ 과 서로소이고 $\varphi(n)$ 보다 작은 e를 선택함, 예 e = 7
- 5. de = 1 mod 160이고 d < 160 인 d를 결정함. 23 * 7 = 161 = 10 * 160 +1 이기 때문에 정확한 값은 d = 23임.

□ RSA의 안전성

- ❖ RSA알고리즘의 공격
 - ▶ 전사적 공격
 - 모든 가능한 개인키로서 시도함
 - ▶ 시간적인 공격
 - 복호 알고리즘의 실행시간에 의존함
 - ▶ 수학적인 공격
 - 두 솟수의 곱을 인수분해 하는 몇 가지 접근
 - 인수분해 문제
 - » 3가지 접근법(책 pp.279)
 - 1. n을 두 개의 솟수로 인수분해 할 수 있는 경우
 - 2. p와 q를 결정하지 않고 직접 $\varphi(n)$ 을 결정
 - 3. 먼저 $\varphi(n)$ 을 결정하지 않고 직접 d를 결정

Thanks

Q & A